Цирконий № 40 Zr
В 1789 г. член Берлинской академии наук Мартин Генрих Клапрот опубликовал результаты анализа драгоценного камня, привезенного с берегов Цейлона. В ходе этого анализа было выделено вещество, которое Клапрот назвал цирконовой землей.
Происхождение этого названия объясняют по-разному. Одни находят его истоки в арабском слове «заркун», что значит минерал, другие считают, что слово «цирконий» произошло от двух персидских слов «цар» — золото и «гун» — цвет (из-за золотистой окраски драгоценной разновидности циркона — гиацинта).
Как получали и получают цирконий
Выделенное Клапротом вещество не было новым элементом, но было окислом нового элемента, который впоследствии занял в таблице Д. И. Менделеева сороковую клетку. Пользуясь современными символами, формулу вещества, полученного Клапротом, записывают так: ZrO2.
Через 35 лет после опытов Клапрота известнейшему шведскому химику Йенсу Якобу Берцелиусу удалось получить металлический цирконий. Берцелиус восстановил фторцирконат калия металлическим натрием:
K2[ZrF6] + 4Na → Zr + 2KF + 4NaF и получил серебристо-серый металл.
Цирконий, образовавшийся в результате этой реакции, был хрупким из-за значительного содержания примесей. Металл не поддавался обработке и не смог найти практического применения. Но можно было предположить, что очищенный цирконий, подобно многим другим металлам, окажется достаточно пластичным.
В XIX и начале XX в. многие ученые пытались получить чистый цирконий, но все попытки долгое время заканчивались неудачей. He. помог испытанный алюмотермический метод, не привели к цели опыты, авторы которых стремились получить металлический цирконий из растворов его солей. Последнее объясняется в первую очередь высоким химическим сродством циркония к кислороду.
Для того чтобы можно было получить какой-либо металл электролизом из раствора его соли, этот металл должен образовывать одноатомные ионы. А цирконий таких ионов не образует. Сульфат циркония Zr(SO4)2, например, существует только в концентрированной
серной кислоте, а при разбавлении начинаются реакции гидролиза и комплексообразования. В конечном счете получается Zr(SO4)2 + H2O → (ZrO)SO4 + H2SO4.
В водном растворе гидролизуется и хлористый цирконии ZrCl4 + H2O → ZrOCl2 + 2HCl.
Некоторые исследователи считали, что им удалось-таки получить его электролизом растворов, но они были введены в заблуждение видом продуктов, осевших на электродах. В одних случаях это были действительно металлы, но не цирконий, а никель или медь, примеси которых содержались в циркониевом сырье; в других — внешне похожая на металл гидроокись циркония. Лишь в 20-х годах нашего столетия (через 100 лет после того, как Берцелиус получил первые образцы этого химического элемента) был разработан первый промышленный способ получения этого металла. Это метод «наращивания», разработанный голландскими учеными ван Аркелем и де Буром. Суть его заключается в том, что летучее соединение (в данном случае тетрайодид циркония ZrI4) подвергается термическому распаду в вакууме и на раскаленной нити вольфрама откладывается чистый металл.
Этим способом был получен металлический цирконий, поддающийся обработке — ковке, вальцовке, прокатке — примерно так же легко, как медь.
Позже металлурги обнаружили, что пластические свойства циркония зависят главным образом от содержания в нем кислорода. Если в расплавленный цирконий проникнет свыше 0,7% кислорода, то металл будет хрупким из-за образования твердых растворов кислорода в цирконии, свойства которых сильно отличаются от свойств чистого металла.
Метод наращивания получил сначала некоторое распространение, но высокая стоимость циркония, полученного этим методом, сильно ограничивала области его применения. А свойства циркония оказались интересными. (О них ниже.) Назрела необходимость в разработке нового, более дешевого способа получения элемента. Таким методом стал усовершенствованный метод Кролля.
Метод Кролля позволяет получать его при вдвое меньших затратах, чем по методу наращивания. Схема этого производства предусматривает две основные стадии: двуокись циркония хлорируется, а полученный четыреххлористый цирконий восстанавливается металлическим магнием под слоем расплавленного металла. Конечный продукт — циркониевая губка переплавляется в прутки и в таком виде направляется потребителю.
Двуокись циркония
Пока ученые искали способ получения металлического Zr, практики уже начали применять некоторые из его соединений, в первую очередь двуокись циркония. Свойства двуокиси циркония в значительной мере зависят от того, каким способом она получена. ZrO2, образующаяся при прокаливании некоторых термически нестойких солей циркония, нерастворима в воде. Слабо прокаленная двуокись хорошо растворяется в кислотах, но, сильно прокаленная, она становится нерастворимой в минеральных кислотах, исключая плавиковую.
Еще одно интересное свойство: сильно нагретая двуокись циркония излучает свет настолько интенсивно, что ее можно применять в осветительной технике. Этим ее свойством воспользовался известный немецкий ученый Вальтер Герман Нернст. Стержни накаливания в лампе Нернста были изготовлены из ZrO2. В качестве источника света раскаленная двуокись циркония иногда и сейчас служит при лабораторных опытах.
В промышленности двуокись циркония первыми применили силикатные производства и металлургия. Еще в начале нашего века были изготовлены цирконовые огнеупоры, которые служат в три раза дольше обычных. Огнеупоры, содержащие добавку ZrO2, позволяют провести до 1200 плавок стали без ремонта печи. Это много.
Цирконовые кирпичи потеснили шамот (широко распространенный огнеупорный материал на основе глины или каолина) при выплавке металлического алюминия, и вот почему. Шамот сплавляется с алюминием, и на его поверхности образуются наросты шлака, которые надо периодически счищать а цирконовые кирпичи расплавленным алюминием не смачиваются. Это позволяет печам, футерованным цирконом, непрерывно работать в течение десяти месяцев.
Значительные количества двуокиси циркония потребляют производства керамики, фарфора и стекла. Список отраслей промышленности, нуждающихся в двуокиси циркония, можно было бы продолжить еще и еще. Но посмотрим, на что пригодился металлический элемент № 40, который так долго не удавалось получить.
Цирконий и металлургия
Самым первым потребителем металлического циркония была черная металлургия. Цирконий оказался хорошим раскислителем. По раскисляющему действию он превосходит даже марганец и титан. Одновременно он уменьшает содержание в стали газов и серы, присутствие которых делает ее менее пластичной.
Стали, легированные цирконием, не теряют необходимой вязкости в широком интервале температур, они хорошо сопротивляются ударным нагрузкам. Поэтому Zr добавляют в сталь, идущую на изготовление броневых плит. При этом, вероятно, учитывается и тот факт, что добавки циркония положительно сказываются и на прочности стали. Если образец стали, не легированной цирконием, разрушается при нагрузке около 900 кг, то сталь той же рецептуры, но с добавкой всего лишь 0,1% циркония выдерживает нагрузку уже в 1600 кг.
Значительные количества циркония потребляет и цветная металлургия. Здесь его действие весьма разнообразно. Незначительные добавки циркония повышают теплостойкость алюминиевых сплавов, а многокомпонентные магниевые сплавы с добавкой циркония становятся более коррозионно-устойчивыми. Zr повышает стойкость титана к действию кислот. Коррозионная стойкость сплава титана с 14% Zr в 5%-ной соляной кислоте при 100°C в 70 раз (!) больше, чем у технически чистого металла.
Иначе влияет цирконий на молибден. Добавка 5% циркония удваивает твердость этого тугоплавкого, но довольно мягкого металла. Есть и другие области применения металлического циркония. Высокая коррозийная стойкость и относительная тугоплавкость позволили использовать его во многих отраслях промышленности. Фильеры для производства искусственного волокна, детали горячей арматуры, лабораторное и медицинское оборудование, катализаторы — вот далеко не полный перечень изделий из металлического циркония.
Однако не металлургия и не машиностроение стали основными потребителями этого металла. Огромные количества циркония потребовались ядерной энергетике.
Проблема «реакторной чистоты»
В ядерную технику цирконий пришел не сразу. Для того чтобы стать полезным в этой отрасли, металл должен обладать определенным комплексом свойств. (Особенно, если он претендует на роль конструкционного материала при строительстве реакторов.) Главное из этих свойств — малое сечение захвата тепловых нейтронов. В принципе эту характеристику можно определить как способность материала задерживать, поглощать нейтроны и тем самым препятствовать распространению цепной реакции.
Величина сечения захвата нейтронов измеряется в барнах. Чем больше эта величина, тем больше нейтронов поглощает материал и тем сильнее препятствует развитию цепной реакции. Естественно, что для реакционной зоны реакторов выбираются материалы с минимальным сечением захвата.
У чистого металлического циркония эта величина равна 0,18 барна. Многие более дешевые металлы имеют сечение захвата такого же порядка: у олова, например, оно равно 0,65 барна, у алюминия — 0,22 барна, а у магния — всего 0,06 барна. Но и олово, и магний, и алюминий легкоплавки и нежаропрочны; он же плавится лишь при 1860°C.
Казалось, единственное ограничение — довольно высокая цена элемента № 40 (хотя для этой отрасли денег жалеть не приходится), но возникло другое осложнение. В земной коре цирконию всегда сопутствует гафний.
В циркониевых рудах, например, его содержание обычно составляет от 0,5 до 2,0%. Химический аналог циркония (в менделеевской таблице гафний стоит непосредственно под цирконием) захватывает тепловые нейтроны в 500 раз интенсивнее циркония. Даже незначительные примеси гафния сильно сказываются на ходе реакции. Например. 1,5%-ная примесь гафния в 20 раз повышает сечение захвата циркония.
Перед техникой встала проблема — полностью разделить цирконий и гафний. Если индивидуальные свойства обоих металлов весьма привлекательны, то их совместное присутствие делает материал абсолютно непригодным для атомной техники.
Проблема разделения гафния и циркония оказалась очень сложной — химические свойства их почти одинаковы из-за чрезвычайного сходства в строении атомов. Для их разделения применяют сложную многоступенчатую очистку: ионный обмен, многократное осаждение, экстракцию.
Все эти операции приводят к значительному удорожанию, а он и без того дорог: пластичный металл (99,7% Zr) во много раз дороже концентрата. Проблема экономичного разделения циркония и гафния еще не до конца решена практически.
И все-таки цирконий стал «атомным» металлом.
Об этом, в частности, свидетельствуют такие факты. На первой американской атомной подводной лодке «Наутилус» был установлен реактор из циркония. Позже выяснилось, что выгоднее делать из циркония оболочки топливных элементов, а не стационарные детали активной зоны реактора.
Тем не менее производство этого металла увеличивается из года в год, и темпы этого роста необыкновенно высоки. Достаточно сказать, что за десятилетие, с 1949 по 1959 г., мировое производство выросло в 100 раз! По американским данным, в 1975 г. мировое производство циркония составило около 3000 т. А к 1985 г., по американским же прогнозам, только атомной энергетике потребуется 5000 т циркония. Еще 2000 т этого металла понадобится военным ведомствам, а тысячу тонн израсходуют в химическом машиностроении для придания различным металлам и сплавам повышенной коррозионной стойкости. Еще несколько сот тонн циркония нужны будут для производства фотографических ламп-вспышек высочайшей надежности... Рост производства элемента № 40 продолжается.
Применение
«НЕСОВЕРШЕННЫЕ АЛМАЗЫ». В средние века были хорошо известны ювелирные украшения из так называемых несовершенных алмазов. Несовершенство их заключалось в меньшей, чем у обычного алмаза, твердости и несколько худшей игре цветов после огранки. Было у них и другое название — матарские (по месту добычи — Матаре, району острова Шри Ланка). Средневековые ювелиры не знали, что используемый ими драгоценный минерал — это монокристаллы циркона, основного минерала циркония. Циркон бывает самой различной окраски — от бесцветного до кроваво-красного. Красный драгоценный циркон ювелиры называют гиацинтом. Гиацинты известны очень давно. По библейскому преданию, древние первосвященники носили на груди 12 драгоценных камней и среди них гиацинт.
РЕДКИЙ ЛИ? В виде различных химических соединений Zr широко распространен в природе. Его содержание в земной коре довольно велико — 0,025%, по распространенности он занимает двенадцатое место среди металлов. Несмотря на это, он пользуется меньшей популярностью, чем многие из действительно редких металлов. Это произошло из-за крайней рассеянности егоия в земной коре и отсутствия крупных залежей его природных соединений.
ПРИРОДНЫЕ СОЕДИНЕНИЯ. Их известно более сорока. Цирконий присутствует в них в виде окислов или солей. Двуокись циркония, бадделеит ZrO2, и силикат циркония, циркон ZrSiO4, имеют наибольшее промышленное значение. Самые мощные из разведанных залежей циркона и бадделеита расположены в США, Австралии, Бразилии, Индии, Западной Африке.
Россия располагает значительными запасами цирконового сырья, находящимися в различных районах Украины, Урала и Сибири.
PbZrO3 — ПЬЕЗОЭЛЕКТРИК. Пьезокристаллы нужны для многих радиотехнических приборов: стабилизаторов частот, генераторов ультразвуковых колебаний и других. Иногда им приходится работать в условиях повышенных температур. Кристаллы цирконата свинца практически не изменяют своих пьезоэлектрических свойств при температуре до 300°C.
МОЗГ. Высокая коррозийная стойкость этого химического элемента позволила применить его в нейрохирургии. Из сплавов Zr делают кровеостанавливающие зажимы, хирургический инструмент и иногда даже нити для наложения швов при операциях мозга.
Поделиться с друзьями