Перейти к основному содержанию
Химия

Медь № 29 Cu

Элемент № 29. Медь жизненно важный элемент. Главный металл электротехники. Один из самых важных, самых древних и самых популярных металлов. Популярных не только в среде инженеров — конструкторов, электриков и машиностроителей, но и у людей гуманитарных профессий — историков, скульпторов, литераторов.

Прочность меди

МедьТот, кто носит медный щит, тот имеет медный лоб.

Л. Соловьев. Похождения Насреддина

С помощью этой немудреной присказки хитрыи Ходжа разделался с прохвостом-ростовщиком, а сам избежал расправы меднолобых стражников. Но допустим, что Ходжа Насреддин хорошо знал свойства меди и свою «дразнилку» адресовал не меднолобым стражникам, а оружейникам. Иначе говоря, имело ли смысл из такого металла, как медь, делать щиты?

В любом техническом справочнике находим прочностные характеристики литой меди: предел прочности 17 кг/мм2 (при нормальной температуре), предел текучести (при 500°С — жесткие, но вполне реальные условия работы многих изделий из меди) 2,2 кг/мм2. Много это или мало? Предел текучести обычной стали в этих условиях достигает 100 кг/мм2. Противодействие ударным нагрузкам (а именно такие нагрузки в основном достаются щитам) у меди также меньше, чем у многих других металлов и сплавов. Не отличается она и особой твердостью: медь, правда, тверже, чем золото и серебро, но в полтора раза мягче железа (соответственно 3,0 и 4,5 по 10-балльной шкале).

У вас не создалось впечатления, что эти цифры, обрети они вдруг дар речи, повторили бы вслед за Ходжой Насреддином: «Тот, кто носит медный щит, тот имеет...»? Но не поддадимся «объективности» голых цифр. Ведь все они взяты из технической литературы XX столетия, а время медных щитов, как и бронзовых пушек, миновало достаточно давно.

Оружейников древности и даже средневековья прочностные характеристики меди вполне устраивали. Во-первых, нагрузка, которую испытывал щит при ударе копьем или секирой, куда меньше пробивной силы винтовочного выстрела. Во-вторых, у древних металлургов не было другого материала, прочного, как медь, и доступного, как медь. Не случайно античный бог-кузнец Гефест выковал непобедимому Ахиллесу медный щит. Именно медный!

Как конструкционный материал медь широко используется и сейчас, но главную ценность приобрели уже не механические, а тепловые и электрические характеристики меди. По способности проводить тепло и электричество медь уступает только драгоценному серебру. У алюминия электросопротивление почти вдвое больше, чем у меди; а у железа — почти в шесть раз.

Но из меди делают не только проволоку и токопроводящие детали аппаратуры. Ее широко используют в химическом машиностроении при изготовлении вакуум-аппаратов, перегонных котлов, холодильников, змеевиков. Из меди и ее сплавов, как и прежде, делают орудия труда и инструмент. В любом цехе, где работают с взрывоопасными или легковоспламеняющимися веществами, можно встретить молотки, стамески, отвертки из медных сплавов. Конечно, стальной инструмент прочнее, долговечнее, дешевле, но он «искрит». Поэтому предпочитают чаще менять инструмент, больше тратить на его приобретение, но уменьшить пожаро- и взрывоопасность.

Гильзы патронов и артиллерийских снарядов обычно желтого цвета. Они сделаны из латуни — сплава меди с цинком. (В качестве легирующих добавок в латунь могут входить алюминий, железо, свинец, марганец и другие элементы). Почему конструкторы предпочли латунь более дешевым черным сплавам и легкому алюминию? Латунь хорошо обрабатывается давлением и обладает высокой вязкостью. Отсюда — хорошая сопротивляемость ударным нагрузкам, создаваемым пороховыми газами.

Большинство артиллерийских латунных гильз используется неоднократно. В годы войны в любом артиллерийском дивизионе был человек (обычно офицер), ответственный за своевременный сбор стреляных гильз и отправку их на перезарядку. В гильзовой латуни 68% меди.

Высокая стойкость против разъедающего действия соленой воды характерна для так называемых морских латуней. Это латуни с добавкой олова. Знаменитый коррозионно-стойкий сплав томпак — это тоже латунь, но доля меди в нем больше, чем в любом другом сплаве этой группы — от 88 до 97%. Еще одно важное свойство латуни: она, как правило, дешевле бронзы — другой важнейшей группы сплавов на основе меди.

Бронза

Первоначально бронзой называли только сплавы меди с оловом. Но олово — дорогой металл, и, кроме того, сочетание Cu—Sn не позволяет получить всех свойств, которые хотелось бы придать сплавам на основе меди. Сейчас существуют бронзы вообще без олова — алюминиевые, кремнистые, марганцовистые и т. д.

Но бронза — это не обязательно памятники. Без бронзовых вкладышей, втулок, сальников, клапанов не обходится ни один химический аппарат. Применение бронз во всех областях машиностроения из года в год расширяется. Из бронзы делают также инструмент, которым работают во взрывоопасных цехах.

Современные бронзы многообразны по составу и свойствам. Обычные оловянистые бронзы содержат до 33% Sn. В так называемую художественную бронзу, тысячелетиями применяемую для скульптурного литья, входит около 5% олова, до 10% цинка и около 3% свинца. В «автомобильных» и «подшипниковых» бронзах олова больше — 10-12%.

Несколько слов о «безоловянных» бронзах. Алюминиевые бронзы. 5-11% Al превращают мягкую медь в материал для изготовления пружин, а бронза АНЖ10-4-4 (10% Al, 4% Ni, 4% Fe) применяется для ответственных деталей авиационных двигателей и турбин.

Свинцовые бронзы содержат 27-33% Pb. Подшипники из такой бронзы работают на предельно больших скоростях. Кремнистые бронзы (до 5% Si) служат заменителями оловянистых и отличаются относительной дешевизной. А бериллиевые бронзы (до 2,3% Be) едва ли не самые прочные из всех цветных сплавов.


История меди

Семь металлов принято называть доисторическими. Золото, серебро, медь, железо, олово, свинец и ртуть были известны людям с древнейших времен. Роль меди в становлении человеческой культуры особенна. Каменный век сменился медным, медный — бронзовым. Не везде этот процесс происходил одновременно. Коренное население Америки переходило от каменного века к медному в XVI в. н.э., всего 400 лет назад! А в древнем Египте медный век наступил в IV тысячелетии до н.э.: 2 млн. 300 тыс. каменных глыб, из которых примерно 5000 лет назад была сложена 147-метровая пирамида Хеопса, добыты и обтесаны медным инструментом...

Подобно золоту и серебру, медь иногда образует самородки. Видимо, из них около 10 тыс. лет назад были изготовлены первые металлические орудия труда. Распространению меди способствовали такие ее свойства, как способность к холодной ковке и относительная простота выплавки из богатых руд.

Медный век длился около тысячи лет — вдвое меньше, чем бронзовый. Характерно, что в Греции культура меди зародилась позже, чем в Египте, а бронзовый век наступил раньше. Руда, из которой выплавляли медь египтяне, не содержала олова. Грекам в этом отношении повезло больше. Они добывали «оловянный камень» иногда там же, где и медную руду. Открытие бронзы произошло, по-видимому, случайно, однако большие твердость и плотность, а также относительная легкоплавкость (добавка 15% Sn снижает температуру плавления меди с 1083 до 960°С) позволили бронзе быстро вытеснить медь из многих производственных сфер.

Искусство выплавки и обработки меди и бронзы от греков унаследовали римляне. Они получали медь из покоренных стран, в первую очередь из Галлии и Испании, продолжали начатую греками добычу медной руды на Крите и Кипре. Кстати, с названием последнего острова связывают латинское имя меди — «купрум». А оловянный камень римляне вывозили с Касситеридских островов (так тогда называли острова Британии); основной минерал олова и сейчас называется касситеритом. Во II-I вв. до н.э. оружие римлян делалось уже в основном из железа, но в производстве предметов домашнего обихода все еще преобладали бронза и медь.

Бронза и медь сыграли выдающуюся роль не только в становлении материальной культуры большинства народов, но и в изобразительном искусстве. В этом качестве они прошли через века. И в наши дни отливают бронзовые скульптуры, делают барельефы и гравюры на меди. Подробно об этом рассказывать, вероятно, не стоит. Произведения изобразительного искусства лучше смотреть, нежели рассуждать о них.

<

Металлургия меди

Металлургам прошлого можно позавидовать. Медь действительно была «изобильней гораздо». Еще в XIX в. рентабельными считались только те медные руды, в которых содержание элемента № 29 достигало 6-9%. А сейчас руда с 5% меди признается очень богатой, большинство же используемых руд содержит лишь 2-3% Cu. В ряде стран перерабатываются руды, в составе которых только полпроцента меди! Это, естественно, усложнило технологию производства этого металла.

Получение меди — многоступенчатый процесс. В первую очередь руду дробят, а затем подвергают флотации. Во флотационных машинах измельченная руда смешивается с водой, в которую заранее введены специальные добавки — флотоагенты. Сюда же подается воздух. Образуется пенящаяся пульпа. Зерна минералов, содержащие металлы и плохо смачиваемые водой, прилипают к пузырькам воздуха и всплывают на поверхностью пустая порода оседает на дно. Умелым подбором реагентов можно еще при флотации частично отделить собственно медную руду от соединений других металлов. Так, добавка цианидов и цинкового купороса уменьшает флотируемость (от английского float — «плавать») сернистого цинка — частого спутника меди в сульфидных рудах. Добавка извести позволяет «утопить» часть железосодержащего пирита. Сульфиды железа присутствуют в большинстве медных руд. Первая в СССР обогатительная фабрика для флотации медной руды была построена в 1929 г. в Казахстане.

В результате флотационного обогащения получаемся концентрат, который поступает в медеплавильные печи. Наиболее распространены сейчас отражательные печи, Это крупные горизонтальные агрегаты, занимающие большую площадь. Шихту загружают в печь, на откосы, идущие вдоль ее боковых стен. Газообразное, жидкое или пылевидное топливо подается не в шихту, а в пространство над ней, и тепло, образующееся при сгорании, как бы отражается от стен печи; температура в отражательной печи около 1200°С.

При плавке здесь образуется не медь, а так называемый штейн, состоящий в основном из трех элементов — меди, железа и серы. Естественно, образуется и шлак. Расплавы штейна и шлака не смешиваются, более легкий шлак плавает на поверхности штейна.

Кварцевый флюс вводится в состав шихты для того, чтобы уменьшить содержание железа в штейне. Окисленное железо сплавляется с кварцем и частично переходит в шлак. Кроме того, чтобы увеличить содержание в штейне меди, концентрат предварительно подвергают окислительному обжигу.

Но несмотря на все ухищрения, количество меди в штейне редко превышает 30%. Поэтому следующая стадия производства — превращение штейна в черновую медь. Этот процесс происходит в конвертерах наподобие бессемеровских, похожих, правда, не на грушу, а на бочонок, уложенный на бок. Поскольку количество примесей, которые надо выжечь в конвертере, очень велико, процесс идет долго; шлак, образующийся при этом, приходится неоднократно сливать.

Подогревать конвертер не нужно: штейн в него заливается в расплавленном состоянии, а реакции окисления железа и серы сопровождаются выделением больших количеств тепла. Поэтому в конвертер подаются лишь воздух и — через горловину — измельченный кварц.

Сначала выжигается железо. Как металл менее благородный, оно окисляется кислородом воздуха раньше, чем медь. Его окислы реагируют с кварцем, и образуется шлак — силикаты железа.

Затем начинается окисление связанной с медью серы. Температура в конвертере все время находится примерно на одном уровне — около 1200°С. Продувку конвертера воздухом прекращают, когда а нем остается так называемая черновая медь, содержащая 98-99% основного металла; остальное приходится главным образом на железо, серу, никель, мышьяк, сурьму, серебро и золото.

Мышьяк, сурьма, сера и железо — примеси вредные. Они отрицательно влияют на самое важное свойство меди — электропроводность. Их необходимо удалить. А золото, серебро и дефицитный никель слишком ценны сами по себе. Поэтому черновую медь подвергают рафинированию — огневому и электролитическому. Первая в России электролитическая медь была получена в конце 80-х годов прошлого века.

В ванну с электролитом помещается катод — тонкий лист из чистой меди. Анодом служит толстая литая плита из черновой меди. Анод растворяется в электролите, и ионы меди разряжаются на катоде. В электролите содержится серная кислота, которая переводит в раствор такие примеси, как никель, железо, цинк. Но так как в ряду напряжений они расположены значительно левее меди, на катоде они не осаждаются — остаются в растворе. А золото, серебро и теллур в раствор не переходят и при разрушении анода осаждаются на дно ванны в виде шлама.

Знаменательно, что все затраты на рафинирование обычно окупаются извлеченными из черновой меди драгоценными металлами. В рафинированной меди сумма примесей не превышает 0,1%.

Медь в живом организме

В печени человека и животных присутствует медь и в довольно значительных количествах — 0,0004 мг на 100 г веса. Есть она и в крови: в организме взрослого человека примерно 0,001 мг/л. Медь участвует в процессах кроветворения и ферментативного окисления. Она входит в состав нескольких ферментов — лактазы, оксидазы и др.

В организме некоторых низших животных относительное содержание меди выше. Гемоцианин — пигмент крови моллюсков и ракообразных — содержит 0,15-0,26% Cu.

Медь нужна и растениям. Это один из важнейших микроэлементов, участвующий в процессе фотосинтеза и влияющий на усвоение растениями азота. Недостаточно меди в почве — растения хуже плодоносят или вообще становятся бесплодными. Медные удобрения содействуют синтезу белков, жиров и витаминов; кроме того, они повышают морозоустойчивость многих сельскохозяйственных культур. Обычно медь вносят в почву в виде самой распространенной ее соли — медного купороса — CuSO4*5H2O. Это сине-голубое кристаллическое вещество получают из отходов меди, обрабатывая их подогретой серной кислотой при свободном доступе кислорода.

В сельском хозяйстве медный купорос используется и в других целях. В его растворах протравливают семена перед посевом. Как и многие другие соли меди, купорос ядовит, особенно для низших организмов. Раствор купороса уничтожает споры плесневых грибов на семенах. Из других соединений меди особой популярностью пользуется малахит Cu2(OH)2CO3, применяемый как поделочный камень. Но малахит используется и как сырье для производства меди. Потому что больше, чем красивые украшения, человечеству нужна медь — главный металл электротехники.

Химические элементы


Поделиться с друзьями