Перейти к основному содержанию
Химия

Стронций №38 Sr

Еще задолго до открытия стронция его нерасшифрованные соединения применяли в пиротехнике для получения красных огней. И до середины 40-х годов прошлого века стронций был прежде всего металлом фейерверков, потех и салютов. Атомный век заставил взглянуть на него по-иному. Во-первых, как на серьезную угрозу всему живому на Земле; во-вторых, как на материал, могущий быть очень полезным при решении серьезных проблем медицины и техники. Но об этом позже, а начнем с истории «потешного» металла, с истории, в которой встречаются имена многих больших ученых.

СтронцийЧетырежды открытая «земля»

В 1764 г. в свинцовом руднике близ шотландской деревни Стронциан был найден минерал, который назвали стронцианитом. Долгое время его считали разновидностью флюорита CaF2 или витерита BaCO3, но в 1790 г. английские минералоги Кроуфорд и Крюикшенк проанализировали этот минерал и установили, что в нем содержится новая «земля», а говоря нынешним языком, окисел.

Независимо от них тот же минерал изучал другой английский химик — Хоп. Придя к таким же результатам, он объявил, что в стронцианите есть новый элемент — металл стронций.

Видимо, открытие уже «витало в воздухе», потому что почти одновременно сообщил об обнаружении новой «земли» и видный немецкий химик Клапрот.

В те же годы на следы «стронциановой земли» натолкнулся и известный русский химик — академик Товий Егорович Ловиц. Его издавна интересовал минерал, известный под названием тяжелого шпата. В этом минерале (его состав BaSO4) Карл Шееле открыл в 1774 г. окись нового элемента бария. Не знаем, отчего Ловиц был неравнодушен именно к тяжелому шпату; известно только, что ученый, открывший адсорбционные свойства угля и сделавший еще много в области общей и органической химии, коллекционировал образцы этого минерала. Но Ловиц не был просто собирателем, вскоре он начал систематически исследовать тяжелый шпат и в 1792 г. пришел к выводу, что в этом минерале содержится неизвестная примесь. Он сумел извлечь из своей коллекции довольно много — больше 100 г новой «земли» и продолжал исследовать ее свойства. Результаты исследования были опубликованы в 1795 г. Ловиц писал тогда: «Я был приятно поражен, когда прочел... прекрасную статью г-на профессора Клапрота о стронциановой земле, о которой до этого имелось очень неясное представление. Все указанные им свойства солекислых и селитрокислых средних солей во всех пунктах совершеннейшим образом совпадают со свойствами моих таких же солей. Мне оставалось только проверить. замечательное свойство стронциановой земли — окрашивать спиртовое пламя в карминовокрасный цвет, и, действительно, моя соль. обладала в полной мере этим свойством».

Так почти одновременно несколько исследователей в разных странах вплотную подошли к открытию стронция. Но в элементном виде его выделили лишь в 1808 г.

Выдающийся ученый своего времени Хэмфри Дэви понимал уже, что элемент стронциановой земли должен быть, по-видимому, щелочноземельным металлом, и получил его электролизом, т. е. тем же способом, что и кальций, магний, барий. Л если говорить конкретнее, то первый в мире металлический стронций был получен при электролизе его увлажненной гидроокиси. Выделявшийся на катоде стронций мгновенно соединялся с ртутью, образуя амальгаму. Разложив амальгаму нагреванием, Дэви выделил чистый металл.

Металл этот белого цвета, не тяжелый (плотность 2,6 г/см3), довольно мягкий, плавящийся при 770°C. По химическим свойствам он типичный представитель семейства щелочноземельных металлов. Сходство с кальцием, магнием, барием настолько велико, что в монографиях и учебниках индивидуальные свойства стронция, как правило, не рассматриваются — их разбирают на примере кальция или магния.

И в области практических применений эти металлы не раз заступали дорогу стронцию, потому что они более доступны и дешевы. Так произошло, например, в сахарном производстве. Когда-то один химик обнаружил, что с помощью дисахарата стронция (C12H22O4*2SrO), нерастворимого в воде, можно выделять сахар из мелассы. Внимание к стронцию сразу же возросло, получать его стали больше, особенно в Германии и Англии. Но скоро другой химик нашел, что аналогичный сахарат кальция тоже нерастворим. И интерес к стронцию тут же пропал. Выгоднее ведь использовать дешевый, чаще встречающийся кальций.

Это не значит, конечно, что стронций совсем «потерял свое лицо». Есть качества, которые отличают и выделяют его среди других щелочноземельных металлов. О них-то мы и расскажем подробнее.

Стронций металл красных огней

Так называл стронций академик А. Е. Ферсман. Действительно, стоит бросить в пламя щепотку одной из летучих солей стронция, как пламя тотчас окрасится в яркий карминово-красный цвет. В спектре пламени появятся линии стронция.

Попробуем разобраться в сущности этого простейшего опыта. На пяти электронных оболочках атома стронция 38 электронов. Заполнены целиком три ближайшие к ядру оболочки, а на двух последних есть «вакансии». В пламени горелки электроны термически возбуждаются и, приобретая более высокую энергию, переходят с нижних энергетических уровней на верхние. Но такое возбужденное состояние неустойчиво, и электроны возвращаются на более выгодные нижние уровни, выделяя при этом энергию в виде световых квантов. Атом (или ион) стронция излучает преимущественно кванты с такими частотами, которые соответствуют длине красных и оранжевых световых волн. Отсюда карминово-красный цвет пламени.

Это свойство летучих солей стронция сделало их незаменимыми компонентами различных пиротехнических составов. Красные фигуры фейерверков, красные огни сигнальных и осветительных ракет — «дело рук» стронция.

Чаще всего в пиротехнике используют нитрат Sr(NO3)2, оксалат SrC2O4 и карбонат SrCO3 стронция. Нитрату стронция отдают предпочтение: он не только окрашивает пламя, но и одновременно служит окислителем. Разлагаясь в пламени, он выделяет свободный кислород:

Sr(NO3)2  → SrO + N2 + 2,502

Окись стронция SrO окрашивает пламя лишь в розовый цвет. Поэтому в пиротехнические составы вводят хлор в том или ином виде (обычно в виде хлорорганических соединений), чтобы его избыток сдвинул равновесие реакции вправо:

2SrO + CI2   →   2SrCl + O2.

Излучение монохлорида стронция SrCl интенсивнее и ярче излучения SrO. Кроме этих компонентов, в пиротехнические составы входят органические и неорганические горючие вещества, назначение которых — давать большое неокрашенное пламя.

Рецептов красных огней довольно много. Приведем для примера два из них. Первый: Sr(NO3)2 — 30%, Mg — 40%, смолы — 5%,

гексахлорбензола — 5%, перхлората калия KClO4 — 20%. Второй: хлората калия KClO3 — 60%, SrC2O4 — 25%, смолы — 15%. Такие составы приготовить несложно, но следует помнить, что любые, даже самые проверенные, пиротехнические составы требуют «обращения на вы». Самодеятельная пиротехника опасна...


Стронций, глазурь и эмаль

Первые глазури появились чуть ли не на заре гончарного производства. Известно, что еще в IV тысячелетии до н.э. ими покрывали изделия из глины. Заметили, что если покрыть гончарные изделия взвесью тонкоизмельченных песка, поташа и мела в воде, а затем высушить их и отжечь в печи, то грубый глиняный порошок покроется тонкой пленкой стекловидного вещества и станет гладким, блестящим. Стекловидное покрытие закрывает поры и делает сосуд непроницаемым для воздуха и влаги. Это стекловидное вещество и есть глазурь. Позже изделия из глины стали сначала покрывать красками, а затем глазурью. Оказалось, что глазурь довольно долго не дает краскам тускнеть и блекнуть. Еще позже глазури пришли в фаянсовое и фарфоровое производство. В наши дни глазурью покрывают керамику и металл, фарфор и фаянс, различные строительные изделия.

Какова же здесь роль стронция?

Чтобы ответить на этот вопрос, придется еще раз обратиться к истории. Основу глазурей составляют различные окислы. Издавна известны щелочные (поташные) и свинцовые глазури. Основу первых составляют окислы кремния, щелочных металлов (К и Na) и кальция. Во вторых присутствует еще и окись свинца. Позже стали широко использовать глазури, содержащие бор. Добавки свинца и бора придают глазурям зеркальный блеск, лучше сохраняют подглазурные краски. Однако соединения свинца ядовиты, а бор дефицитен.

В 1920 г. американец Хилл впервые применил матовую глазурь, в состав который входили окислы стронция (система Sr-Ca-Zn). Однако этот факт остался незамеченным, и только в годы второй мировой войны, когда свинец стал особо дефицитным, вспомнили об открытии Хилла. И хлынула лавина исследований: в разных странах появились десятки (!) рецептур стронциевых глазурей. Предпринимались попытки и здесь заменить стронций кальцием, но кальциевые глазури оказались неконкуренто способными.

Стронциевые глазури не только безвредны, но и доступны (карбонат стронция SrCO3 в 3,5 раза дешевле свинцового сурика). Все положительные качества свинцовых глазурей свойственны и им. Более того, изделия, покрытые такими глазурями, приобретают дополнительную твердость, термостойкость, химическую стойкость.

На основе окислов кремния и стронция готовят также эмали — непрозрачные глазури. Непрозрачными их делают добавки окислов титана и цинка. Изделия из фарфора, особенно вазы, часто украшают глазурью «кракле». Такая ваза словно покрыта сеткой окрашенных трещин. Основа технологии «кракле» — разные коэффициенты термического расширения глазури и фарфора. Фарфор, покрытый глазурью, обжигают при температуре 1280-1300°C, затем температуру снижают до 150-220°C и еще не до конца остывшее изделие опускают в раствор красящих солей (например, солей кобальта, если нужно получить черную сетку). Эти соли заполняют возникающие трещины. После этого изделие сушат и вновь нагревают до 800-850°C — соли плавятся в трещинах и герметизируют их. Глазурь «кракле» популярна и широко распространена во многих странах мира. Произведения декоративно-прикладного искусства, выполненные в этой манере, ценят любители. Остается добавить, что использование стронциевых безборных глазурей дает большой экономический эффект.


Стронций радиоактивный

Еще одна особенность стронция, резко выделяющая его среди щелочноземельных металлов, — существование радиоактивного изотопа стронция-90, который волнует биофизиков, физиологов, радиобиологов, биохимиков и просто химиков уже давно.

В результате цепной ядерной реакции из атомов плутония и урана образуются около 200 радиоактивных изотопов. Большинство из них короткоживущие. Но в тех же процессах рождаются и ядра стронция-90, период полураспада которого 27,7 года. Стронций-90 — чистый бета-излучатель. Это значит, что он испускает потоки энергичных электронов, которые действуют на все живое на сравнительно небольших расстояниях, но очень активно. Стронций как аналог кальция активно участвует в обмене веществ и вместе с кальцием откладывается в костной ткани.

Стронций-90, а также образующийся при его распаде дочерний изотоп иттрий-90 (с периодом полураспада 64 часа, излучает бета-частицы) поражают костную ткань и, самое главное, особо чувствительный к действию радиации костный мозг. Под действием облучения в живом веществе происходят химические изменения. Нарушаются нормальная структура и функции клеток. Это приводит к серьезным нарушениям обмена веществ в тканях. А в итоге развитие смертельно опасных болезней — рака крови (лейкемия) и костей. Кроме того, излучение действует на молекулы ДНК и, следовательно, влияет на наследственность. Влияет пагубно.

Содержание стронция-90 в человеческом организме находится в прямой зависимости от общей мощности взорванного атомного оружия. Он попадает в организм при вдыхании радиоактивной пыли, образующейся в процессе взрыва и разносимой ветром на большие расстояния. Другим источником заражения служат питьевая вода, растительная и молочная пища. Но и в том и в другом случаях природа ставит естественные препоны на пути стронция-90 в организм. В тончайшие структуры дыхательных органов могут попасть лишь частицы величиной до 5 мкм, а таких частиц при взрыве образуется немного. Во-вторых, стронций при взрыве выделяется в виде окиси SrO, растворимость которой в жидкостях организма весьма ограничена. Проникновению стронция через пищевую систему препятствует фактор, который называют «дискриминацией стронция в пользу кальция». Он выражается в том, что при одновременном присутствии кальция и стронция организм предпочитает кальций. Соотношение Ca : Sr в растениях вдвое больше, чем в почвах. Далее, в молоке и сыре содержание стронция в 5-10 раз меньше, чем в траве, идущей на корм скоту.

Однако целиком полагаться на эти благоприятные факторы не приходится — они способны лишь в какой-то степени предохранить от стронция-90. Не случайно до тех пор, пока не были запрещены испытания атомного и водородного оружия в трех средах, число пострадавших от стронция росло из года в год. Но те же страшные свойства стронция-90 — и мощную ионизацию, и большой период полураспада — удалось обратить на благо человека.

Радиоактивный стронций нашел применение в качестве изотопного индикатора при исследовании кинетики различных процессов. Именно этим методом в опытах с животными установили, как ведет себя стронций в живом организме: где преимущественно он локализуется, каким образом участвует в обмене веществ и так далее. Тот же изотоп применяют в качестве источника излучения при лучевой терапии. Аппликаторами со стронцием-90 пользуются при лечении глазных и кожных болезней. Препараты стронция-90 применяют также в дефектоскопах, в устройствах для борьбы со статическим электричеством, в некоторых исследовательских приборах, в атомных батареях. Нет открытий принципиально вредных — все дело в том, в чьих руках окажется открытие. История радиоактивного стронция — тому подтверждение.

Химические элементы


Поделиться с друзьями