Рений Re № 75
История элемента № 75, подобно истории многих других элементов, начинается с 1869 г., года открытия периодического закона. Недостающие элементы VII группы Менделеев называл «экамарганцем» и «двимарганцем» (от санскритских «эка» — один и «дви» — два). Правда, в отличие от экабора (скандия), экаалюминия (галлия) и экасилиция (германия), эти элементы не были описаны подробно. Впрочем, сообщений, авторы которых претендовали на открытие двимарганца, вскоре появилось довольно много. Так, в 1877 г. русский ученый С. Керн сообщил об открытии элемента дэвия, который мог бы занять место двимарганца в менделеевской таблице. Сообщение Керна не приняли всерьез, потому что повторить его опыты не удалось. Однако открытая Керном качественная реакция на этот элемент (через роданидный комплекс) остается основой аналитического метода определения рения...
Систематические поиски не открытых аналогов марганца начали в 1922 г. немецкие химики Вальтер Ноддак и Ида Такке, ставшая позже супругой Ноддака. Они отлично представляли себе, что найти элемент № 75 будет нелегко: в природе элементы с нечетными атомными номерами распространены всегда меньше, чем их соседи слева и справа. А здесь и четные соседи — элементы № 74 и 76, вольфрам и осмий,— достаточно редки. Распространенность осмия составляет величину порядка 10-6%, поэтому для элемента № 75 следовало ожидать величины еще меньшей, примерно 10-7%. Так, кстати, и оказалось...
Первоначально для поисков нового элемента были избраны платиновые руды, а также редкоземельные минералы — колумбит, гадолинит. От платиновых руд вскоре пришлось отказаться — они были слишком дороги. Все внимание исследователи — супруги Ноддак и их помощник Берг — сосредоточили на более доступных минералах, и им пришлось проделать поистине титаническую работу. Вделение препаратов нового элемента в количестве, доступном для рентгеноскопического исследования, потребовало многократного повторения однообразных и долгих операций: растворение, выпаривание, выщелачивание, перекристаллизация. В общей сложности за три года было переработано более 1600 образцов. Лишь после.этого.в рентгеновской! спектре одной из фракций колумбита были обнаружены пять новых линий, принадлежащих элементу № 75. Новый элемент назвали рением — в честь Рейнской провинции, родины Иды Ноддак. 5 сентября 1925 г. в собрании немецких химиков в Нюрнберге Ида Ноддак сообщила об открытии рения. В следующем году та же группа ученых выделила из минерала молибденита MoS2 первые 2 мг рения.
Через несколько месяцев после этого открытия чешский химик Друце и англичанин Лоринг сообщили о том, что они обнаружили элемент № 75 в марганцевом минерале пиролюзите Мп02. Таким образом, число ученых, открывших рений, увеличилось до пяти. Позже почетный член Чехословацкой академии наук И. Друце не раз писал, что, кроме них с Лорингом, супругов Ноддак и Берга, честь открытия рения должны бы разделить еще два ученых — Гейровский и Долейжек.
Выдающийся изобретатель Я. Гейровский первым в мире ввел в практику химических исследований новый прибор — полярограф. Одним из первых открытий, сделанных с помощью полярографа, было обнаружение следов дви-марганца в неочищенных марганцевых соединениях. В. Долейжек подтвердил присутствие нового элемента в препаратах Гейровского и Друце рентгенографическими исследованиями. Этот видный ученый погиб в фашистском концлагере в Терезине в начале 1945 г. ...
Минералы рения
Первый грамм сравнительно чистого металлического рения получен супругами Ноддак в 1928 г. Чтобы получить этот грамм, им пришлось переработать более 600 кг норвежского молибденита. Позже были установлены новые закономерности распространения рения в различных рудных месторождениях, выявлены условия, благоприятные для накопления этого редкого и рассеянного элемента. Вернее даже будет сказать — крайне редкого. По подсчетам академика А. П. Виноградова, содержание рения в земной коре не превышает 7-10-8 %. Это значит, что в природе его в 5 раз меньше, чем золота, в 100 раз меньше, чем серебра, в 1000 раз меньше, чем вольфрама, в 900 тыс. раз меньше, чем марганца, и в 51 млн. раз меньше, чем железа.
О рассеянности рения можно судить по таким фактам. В природе он практически всегда встречается лишь в виде изоморфной примеси в минералах других элементов. Его обнаружили в десятках минералов: от повсеместно распространенного пирита до редких платиновых руд. Следы его находят даже в бурых углях.
В джезказганских медных и медно-свинцово-цинковых рудах найден в виде тонких прожилков длиной не больше 0,1 мм минерал джезказганит, единственный пока изученный собственно рениевый минерал. Исследования советских ученых показали, что этот минерал содержит сульфид рения, а также сульфиды молибдена и свинца. Ориентировочная формула джезказганита Pb4Re3Mo3S16.
Редкий и рассеянный рений мигрирует в земной коре. В подземных водах растворены вещества, способные воздействовать на ренийсодержащие минералы. Под влиянием этих веществ заключенный в них рений окисляется до Re207 (высший окисел, который образует сильную одноосновную кислоту HReO4). Этот окисел в свою очередь может реагировать с окислами и карбонатами щелочных металлов. При этом образуются водорастворимые соли — перрепаты.
Такими процессами объясняют отсутствие рения в окисленных рудах цветных металлов в присутствие его в водах шахт и карьеров, где добывают руды многих металлов. В воде артезианских скважин и естественных водоемов, расположенных близ ренийсодержащих рудных месторождений, тоже находят следы этого элемента.
Казалось бы, в соответствии с положением элемента № 75 в таблице Менделеева, он должен накапливаться прежде всего в минералах своего аналога — марганца. Но, вопреки ожиданиям, в марганцевых рудах рений есть далеко не всегда, а если и есть, то в очень незначительных количествах. Во всяком случае, промышленного интереса — как источник рения — марганцевые руды пока не представляют. Самым богатым промышленным ренийсодержащим минералом остается молибденит MoS2, в котором находят до 1,88% рения.
Во многих рудных месторождениях обнаружен элемент № 75, но не известно ни одного месторождения, промышленную ценность которого определял бы только рений. Этот металл есть в медистых песчаниках, медно-молибденовых и полиметаллических рудах, в колчеданах. И почти всегда рения в них очень мало — от миллиграммов до нескольких граммов на тонну. Нетрудно подсчитать, какое огромное количество руды надо переработать, чтобы получить хотя бы килограмм рения. При этом не следует забывать о неизбежности потерь металла в процессе переработки руды. Не случайно же рениевый потенциал всех месторождений западных стран, вместе взятых, еще недавно определялся всего в тысячу тонн.
Сплавы рения
Известно, что в 1968 г. почти две трети рения, проданного в США, пошли на изготовление тугоплавких сплавов. Это в основном сплавы рения с вольфрамом и молибденом. В 1955 г. в Англии был обнаружен так называемый «рениевый эффект»: как выяснилось, рений повышает одновременно и прочность, и пластичность молибдена и вольфрама.
В нашей стране используются сплавы вольфрама с 5, -0 илп 27% рения (ВР-5, ВР-20, ВР-27ВП) и молибдена — с °, 20 и 47% рения, а также молибден-вольфрамрениевые сплавы. Эти сплавы высокопрочны, пластичны (и, следовательно, технологичны), хорошо свариваются. Изделия из
них сохраняют свои свойства и форму в самых трудных условиях эксплуатации. Рений работает на морских судах и самолетах, в космических кораблях и в полярных экспедициях. Он стал важным материалом для электронной и электротехнической промышленности. Именно здесь наиболее полно используется комплекс выдающихся свойств рения и его сплавов. Из них делают нити накала, сетки, подогреватели катодов. Детали из сплавов рения есть в электронно-лучевых трубках, приемно-усилительных и генераторных лампах, в термоионных генераторах, в масс-спектрометрах и других приборах.
Элемент № 75 стал важен для приборостроения: из ренийсодержащих сплавов делают, в частности, керны измерительных приборов высших классов точности. Керн — это опора, на которой вращается рамка прибора. Материалы для кернов должны быть немагнитны, коррозионностойки, тверды. И еще они должны как можно медленнее изнашиваться в процессе эксплуатации. Таким условиям отвечает многокомпонентный сплав на кобальтовой основе 40-КНХМР, легированный 7% рения. Этот же сплав используют для производства упругих элементов крутильных весов и гироскопических приборов.
В геодезическо-маркшейдерских приборах очень важна работа стабилизирующих устройств — оптических или механических узлов, закрепленных на тонких металлических подвесах. Такие подвесы есть в нивелирах, теодолитах, гиротеодолитах. В лучших из них подвесами служат тонкие проволочки и ленточки из рениевых сплавов.
Термопары, в которых работают сплавы рения и вольфрама, служат для измерения высокой температуры (до 2600°С). Такие термопары значительно превосходят применяемые в промышленности стандартные термопары из вольфрама и молибдена.
Для атомной техники сплавы, содержащие рений - перспективный конструкционный материал. Еще в 1963 г. стали делать цельнотянутые трубки из сплава вольфрама с 26% рения. Их назначение — стать оболочками тепловыделяющих элементов и некоторых других деталей, работающих в реакторах при температуре от 1650 до 3000° С.
<
С каждым годом рений и его сплавы все шире (и все разнообразнее) применяют в авиационной и космической технике. В частности, сплав тантала с 2,5% рения и 8% вольфрама предназначен для изготовления теплозащитных экранов аппаратов, возвращающихся из космоса в атмосферу Земли.
Катализ
В течение многих лет мировая рениевая промышленность находилась в состоянии относительного покоя. Производство этого металла держалось в пределах одной-двух тонн в год, цены оставались на одном и том же уровне, а поскольку этот уровень очень высок, спрос на металл был даже ниже предложения. Расход рения на изготовление миниатюрных изделий (детали электронных ламп, термопары и т. д.) весьма незначителен, и даже бурный рост этих производств мало сказывался на масштабах производства рения. Чтобы в рениевой промышленности произошли существенные перемены, были нужны новые, более крупные потребители этого редкого металла.
И такой потребитель появился. В 1969—1970 гг. нефтеперерабатывающая промышленность начала промышленное освоение новых катализаторов. Появление рениево-платиновых катализаторов позволило намного увеличить выход бензинов с высоким октановым числом. Более того, использование этих катализаторов вместо платиновых позволяет на 40-45% увеличить пропускную способность установок. К тому же срок службы новых катализаторов в среднем в четыре раза больше, чем старых.
Массовое внедрение рениевых катализаторов вызвало резкий скачок в спросе на рений во многих западных странах. И хотя цены на него тутже подскочили втрое, рений по-прежнему дешевле платины. Новые катализаторы быстро перекроили рениевые балансы многих стран. Если в конце 60-х годов большая часть производимого рения шла в сплавы, то в 1971 г. три четверти проданного в США рения было израсходовано на изготовление катализаторов. Известно и другое: в 1971 г. в США было продано примерно в три раза больше рения, чем в 1968 г.
Таким образом, будущее элемента № 75 теперь связывают не только с жаропрочными сплавами, но и нефтеперерабатывающей промышленностью. И с нефтехимией.
ИЗОТОПЫ РЕНИЯ И ВОЗРАСТ МИНЕРАЛОВ. Известны всего два природных изотопа рения: 185Re и 187Re. Тяжелого изотопа на Земле почти вдвое больше, чем легкого (62,9 и 37,1% соответственно). Рений-187 радиоактивен, период полураспада — 5 • 1010 —1011 лет. Испуская бета-лучи, рений-187 превращается в осмий. Существует рений-осмиевый метод определения возраста минералов. С помощью этого метода был определен возраст молибденитов из месторождений Норвегии и Чили. Оказалось, что норвежские молибдениты в большинстве случаев образовались примерно 700— 900 млн. лет назад. Молибдениты Чили (из месторождения Сан-Антонио) намного моложе: их возраст всего 25 млн. лет.
СОПРОТИВЛЕНИЕ ВОДНОМУ ЦИКЛУ. У многих перегоревших ламп — и радиоламп, и обычных осветительных — внутри на стекле появляется темный налет. Это результат действия так называемого водного цикла. Смысл этого термина объяснить несложно: как бы тщательно мы ни откачивали воздух из ламп, некоторое количество водяных паров всегда остается; при высокой температуре вода диссоциирует на водород и кислород; последний взаимодействует с нагретым, вольфрамом; окись вольфрама испаряется, а присутствующий там же водород ее восстанавливает. В результате мельчайшие частицы вольфрама перелетают с нити накаливания на стекло, образуя темное пятно, а сама нить становится тоньше и в конце концов обрывается. Лампа выходит из строя. Рений при 1300° С вдвое, а при 1750° С в 8 раз устойчивее к водному циклу, нежели вольфрам. Следовательно, сплавы вольфрама с рением — значительно лучший материал для изготовления нитей накаливания, чем чистый вольфрам.
САМООЧИЩЕНИЕ. Электротехнику рений интересует и как материал для контактов. У рениевых контактов есть очень ценное свойство — способность к самоочищению. Обычно контакты выходят из строя оттого, что их поверхность покрывается слоем окисной пленки, препятствующей току, или же контакты свариваются. Рений, как и другие металлы, окисляется, когда между контактами возникает электрическая дуга, но семиокись рения Re2O7 летуча — в процессе естественного саморазогрева контактов она испаряется, и толщина окисной пленки остается минимальной. Эта пленка практически не увеличивает сопротивления контактов, но препятствует их свариванию. Самоочищение рениевых контактов гарантирует падежную работу многих электротехнических устройств на Земле и в космосе.
САМЫЙ БОГАТЫЙ МИНЕРАЛ? Возможно, «самый» — слишком сильно сказано. Минералы, богатые рением, до открытия джезказганита вообще не были известны. Тем не менее еще в 1932 г. финский ученый Артоваара опубликовал статью, в которой доказывал, что ему известен самый богатый рениевый минерал в мире. Этот минерал — финский гадолинит, представляющий собой силикат бериллия, двухвалентного железа и редкоземельных элементов, прежде всего иттрия. Более поздние исследования подтвердили несколько повышенное содержание рения в гадолините из Финляндии, однако оно не так велико, чтобы рений включили в принятую формулу минерала. Как и прежде, ее пишут так: Y2FeBe2Si2O10.
ЛЕГИРОВАНИЕ НАОБОРОТ. Обычно легирующими металлами бывают металлы более дорогие, чем металл-основа. Примеров тому множество: легирование железа хромом, магния — редкими землями и так далее. Но иногда бывает и наоборот. Ценнейшие платинорениевые сплавы легируют, добавляя к ним иридий, кобальт, никель и даже железо — самый дешевый из всех металлов! Делают это не только для того, чтобы удешевить сплав: четыре добавки, из которых лишь одна — благородный металл, заметно улучшают механические свойства этого ультраблагородного сплава.
Поделиться с друзьями