Перейти к основному содержанию
Химия

Барий


В 1774 г. шведский химик Карл Вильгельм Шееле и его друг Юхан Готлиб Ган исследовали один из самых тяжелых минералов — тяжелый шпат BaSO4. Им удалось выделить неизвестную раньше «тяжелую землю», которую потом назвали баритом (от греческого [lapog — тяжелый). А через 34 года Хэмфри Дэви, подвергнув электролизу мокрую баритовую землю, получил из нее новый элемент — барий. Следует отметить, что в том же 1808 г., несколько раньше Дэви, Йенс Якоб Берцелиус с сотрудниками получил амальгамы кальция, стронция и бария. Так появился элемент барий.

Барий

Естествен вопрос: почему барий не открыли раньше, ведь главный его минерал BaSO4 известен с XVII в.? «Вскрыть» этот минерал, выделить из него «землю», окисел, оказалось не под силу предшественникам Шееле и Гана. Еще алхимики прокаливали BaSO4 с деревом или древесным углем и получали фосфоресцирующие «болонские самоцветы». Но химически эти самоцветы не ВаО, а сернистый барий BaS.
Интересно, что в чистом виде сульфид бария не светится: необходимы микропримеси веществ-активаторов — солей висмута, свинца, молибдена и других металлов.

Барий вокруг нас


В земной коре содержится 0,05% бария. Это довольно много — значительно больше, чем, скажем, свинца, олова, меди или ртути. В чистом виде в земле его нет: барий активен, он входит в подгруппу щелочноземельных металлов и, естественно, в минералах связан достаточно прочно.
Основные минералы бария — уже упоминавшийся тяжелый шпат BaSO4 (чаще его называют баритом) и витерит ВаСОз, названный так по имени англичанина Уильяма Витеринга (1741—1799), который открыл этот минерал в 1782 г. В небольшой концентрации соли бария содержатся во многих минеральных водах и морской воде. Малое содержание в этом случае плюс, а не минус, ибо все соли бария, кроме сульфата, ядовиты.
Знаменитый польский писатель-фантаст и философ Станислав Лем в своей книге «Сумма технологии» высказал мысль, что природа — вовсе не такой уж гениальный конструктор, каким ее хотят представить многие ученые. Возможно, что это и так, но природе нельзя отказать в одном — в большой придирчивости. Так, создавая живое вещество, она из 107 известных нам элементов использовала около 20 (включая микроэлементы). И барию здесь повезло. Он попал в число «избранных», правда, в основном как спутник кальция. Барий встречается в стеблях морских водорослей, в известковом покрове морских животных, в золе деревьев и растений.

Чистый барий и баритовая вода

Барий можно получить разными способами, в частности при электролизе расплавленной смеси хлористого бария и хлористого кальция. Можно получать барий и восстанавливая его из окиси алюмотермическим способом. Для этого витерит обжигают с углем и получают окись бария:
ВаСO3 + С  → ВаО + 2СО.
Затем смесь ВаО с алюминиевым порошком нагревают в вакууме до 1250° С. Пары восстановленного бария конденсируются в холодных частях трубы, в которой идет реакция:
ЗВаО + 2АL → »Аl2O3 + ЗВа.
интересно, что в состав запальных смесей для алюмотермии часто входит перекись бария Ва02.
Получить окись бария простым прокаливанием витерита трудно: витерит разлагается лишь при температуре выше 1800° С. Легче получать ВаО, прокаливая нитрат бария Ba(NO3)2:
2Ва (NO3)2 →  2ВаО + 4NO + O2.
И при электролизе и при восстановлении алюминием получается мягкий (тверже свинца, но мягче цинка) блестящий белый металл. Он плавится при 710° С, кипит при 1638° С, его плотность 3,76 г/см3. Все это полностью соответствует положению бария в подгруппе щелочноземельных металлов, Известны семь природных изотопов бария. Самый распространенный из них барий-138; его больше 70%.
Барий весьма активен. Он самовоспламеняется от удара, легко разлагает воду, образуя растворимый гидрат окиси бария:
Ва + 2Н2O → Ва (ОН)2 + Н2.
Водный раствор гидрата окиси бария называют баритовой водой. Эту «воду» применяют в аналитической химии для определения СO2 в газовых смесях. Но это уже из рассказа о применении соединений бария. Металлический же барий практического применения почти не находит. В крайне незначительных количествах его вводят в подшипниковые и типографские сплавы. Сплав бария с никелем используют в радиолампах, чистый барий — только в вакуумной технике как геттер (газопоглотитель).

Польза бариевых солей


Важнее оказались соединения бария. Так, карбонат бария ВаСОз добавляют в стекольную массу, чтобы повысить коэффициент преломления стекла. Сернокислый барий применяют в бумажной промышленности как наполнитель; качество бумаги во многом определяется ее весом, барит BaSO4 утяжеляет бумагу. Эта соль обязательно входит во все дорогие сорта бумаги. Кроме того, сульфат бария -широко используется в производстве белой краски литопона — продукта реакции растворов сернистого бария с сернокислым цинком:
BaS + ZnSO4  → BaSO4 + ZnS.
Обе соли, имеющие белый цвет, выпадают в осадок, в растворе остается чистая вода. Белая краска на основе мелкокристаллических сульфата бария и сульфида цинка не-ядовита и обладает хорошей кроющей способностью.
При бурении глубинных нефтяных и газовых скважин используется в качестве буровой жидкости взвесь серно-кислого бария в воде.
Еще одна бариевая соль находит важное применение. Это титапат бария ВаТiO3 — один из самых главных сегнетоэлектриков , считающихся очень ценными электротехническими материалами. Свое название сегнетоэлектрики (правильнее было бы «сеньетоэлектрики») получили от имени французского аптекаря Сеньета, открывшего около 1655 г. двойную калиево-натриевую соль винной кислоты. Сеньет и не думал, что его соль обладает какими-то особыми физическими свойствами, в течение многих лет ее применяли только как слабительное. И лишь в 1918 г. американский физик Андерсон обратил внимание на то, что при температуре от —15 до +22° С эта соль имеет необычно большую диэлектрическую проницаемость. Тогда и родилось понятие о новом классе веществ, называемых теперь сегнетоэлектриками.
В 1944 г. этот класс пополнился тптанатом бария, сегнетоэлектрические свойства которого были открыты советским физиком Б. М. Вулом. Особенность титаната бария состоит в том, что он сохраняет сегнетоэлектрнческие свойства в очень большом интервале температуры — от близкой к абсолютному нулю до +125° С. Это обстоятельство, а также большая механическая прочность и влагостойкость титаната бария способствовали тому, что он стал одним из самых важных сегнетоэлектриков. Получить его сравнительно просто. Витерит ВаСОз при 700—800° С реагирует с двуокисью титана ТiO2, получается как раз то, что нужно:
ВаСO3 + ТiO2 →  ВаTiO3 + СO2.
 


Титанат бария, как и все сегнетоэлектрики, обладает также пьезоэлектрическими свойствами: изменяет свои электрические характеристики под действием давления. При действии переменного электрического поля в его кристаллах возникают колебания, в связи с чем их используют в радиосхемах и автоматических системах. Титанат бария применяли при попытках обнаружить волны гравитации.
На вопрос, найдет ли этот скромный элемент № 56 какое-либо новое применение в народном хозяйстве, сейчас, пожалуй, ответить нельзя. Не следует, конечно, ждать от него слишком многого. Он не очень специфичен, довольно рассеян и уже потому недешев. Кроме того, технология получения многих соединений бария трудоемка и требует больших затрат энергии. Но, думается, что еще не все полезные свойства бария и его соединений известны людям. Не случайно же главная на сегодня бариевая соль — его титанат — служит людям менее полувека...
ЗЕЛЕНЫЙ ОГОНЬ. Окуните стеклянную палочку в раствор соли бария, а затем внесите ее в огонь горелки — пламя сразу же окрасится в зеленый цвет. Это одна из характерных качественных реакций элемента № 56. Зеленая окраска пламени — «визитная карточка» бария, даже если он присутствует в микроскопических количествах. Когда во время салютов вы видите зеленые ракеты или как, разбрасывая искры, медленно горит зеленый бенгальский огонь, вспомните, что в их составе обязательно есть соли бария. К примеру, в состав зеленого бенгальского огня входят Ва(NOз)3 и ВаСl2.
КАК ДОБЫВАЛИ КИСЛОРОД. Прокаливаемая окись бария при 500—600° С начинает поглощать кислород воздуха, образуя перекись бария ВаО2. Однако при дальнейшем нагреве (выше 700° С) от перекиси бария отщепляется кислород, и она вновь переходит в окись. В XIX в. этими реакциями пользовались для получения кислорода: окись бария превращали в перекись, а затем, нагревая последнюю, получали кислород. Этот метод применяли до 90-х годов прошлого века, пока не был найден способ извлечения кислорода из жидкого воздуха.

Барий в рентгеноскопии

Старинная арабская пословица говорит: «Все несчастья в жизни — от желудка». Действительно, желудочные заболевания причиняют много беспокойства медикам, а еще больше — некоторым их пациентам. Здесь врачам помогает барий. Его сернокислую соль применяют при диагностике желудочных заболеваний. BaSO4 смешивают с водой и дают проглотить пациенту. Сульфат бария непрозрачен для рентгеновских лучей, и поэтому те участки пищеварительного тракта, по которым идет «бариевая каша», остаются на экране темными. Так врач получает представление о форме желудка и кишок, определяет место, где может возникнуть язва.


БАРИЙ И РАДИАЦИЯ. В последние годы элемент № 56 нашел применение в атомной технике. Во-первых, барий, хорошо поглощающий рентгеновское излучение и гамма-лучи, вводят в состав защитных материалов. Во-вторых, платиноцианатом бария Ba[Pt(CN)4] покрывают светящиеся экраны приборов. Под действием рентгеновских или гамма-лучей кристаллы этой соли начинают ярко светиться желто-зеленым цветом. В-третьих, соединения бария используют в качестве носителя при извлечении радия из урановых руд.
Химические элементы

Поделиться с друзьями