Перейти к основному содержанию
Химия

Торий радиоактивный

Первая попытка использовать на практике радиоактивность тория была предпринята в 1913 г. Его «дитя» — мезоторий стали применять в производстве светящихся красок, которыми наносили цифры на циферблаты часов. Спустя несколько лет обнаружили, что со временем циферблаты перестают светиться (причину мы знаем: относительно малое время жизни мезотория). Но не это стало причиной спешного изгнания мезотория из лакокрасочного производства: в 20-х годах заметно увеличилась смертность среди работниц, выписывавших кисточками цифры на циферблатах. Патологоанатомы констатировали накопление мезотория в костях погибших. Выяснилось, что, как многие рисовальщики, работницы заостряли концы кисточек губами. При этом они проглатывали за год до 1,75 г краски и с ней почти 10 мг мезотория...

Но мезоторий все-таки не сам торий. А как обстоит дело с ним? Как ни странно, поступление тория в желудочно-кишечный тракт (тяжелый металл, к тому же радиоактивный!) не вызывает отравления. Объясняется это тем, что в желудке — кислая среда, и в этих условиях соединения тория гидролизуются. Конечный продукт — нерастворимая гидроокись тория, которая выводится из организма. Острое отравление способна вызвать лишь нереальная доза в 100 г тория...

Выходит, что «вкушать» торий не столь опасно, как дорого: упомянутое количество элемента № 90 стоит около четырех долларов. И все же есть торий не следует даже очень богатым людям. Чрезвычайно опасно попадание тория в кровь. В этом, к сожалению, люди убедились не сразу.

В 20-30-х годах при заболеваниях печени и селезенки для диагностических целей применяли препарат «торотраст», включавший окись тория. Врачи, уверенные в нетоксичности ториевых препаратов, прописывали торотраст тысячам пациентов. И тут начались неприятности. Несколько человек погибли от заболевания кроветворной системы, у некоторых возникли специфические опухоли.

Оказалось, что, попадая в кровь в результате инъекций, торий осаждает протеин и тем способствует закупорке капилляров. Отлагаясь в костях близ кроветворных тканей, природный торий-232 становится источником гораздо более опасных для организма изотопов — мезотория, тория-228, торона... Естественно, что торотраст был спешно изъят из употребления.

Как видим, первые попытки применить радиоактивный торий на практике закончились неудачно. Элементом первостепенной важности, стратегическим металлом торий стал лишь после второй мировой войны.

Как и всякий четно-четный изотоп (четное число протонов и нейтронов), торий-232 не способен делиться тепловыми нейтронами и быть ядерным горючим. Но под действием тех же нейтронов с торием происходит вот что:

23290Th + 10n → 23390Th —β23391Pa —β-→ 23392U
А уран-233 — отличное ядерное горючее, поддерживающее цепную реакцию.

Уран-233 имеет некоторые преимущества перед другими видами ядерного горючего: при делении его ядер выделяется больше нейтронов. Каждый нейтрон, поглощенный ядром плутония-239 или урана-235, дает 2,03-2,08 новых нейтронов, а урана-233 — намного больше — 2,37!

Применение тория в качестве ядерного горючего затруднено прежде всего тем, что в побочных реакциях образуются изотопы с высокой активностью. Главный из таких загрязнителей, уран-232, — альфа- и гамма-излучатель с периодом полураспада 73,6 года. Тем не менее ториевые ядерные реакторы есть.

Пока расход металлического тория в атомных реакторах намного меньше, чем урана. Его использованию препятствует и то обстоятельство, что торий дороже урана. Уран легче выделить. Некоторые рудные урановые минералы (уранинит, урановая смолка) — это простые окислы урана. У тория таких простых минералов (имеющих серьезное промышленное значение) нет. А попутное выделение из редкоземельных минералов, как мы уже знаем, осложнено сходством тория с элементами семейства лантана.

Тем не менее о ториевой ядерной энергетике следует думать всерьез. Запасы этого элемента только в редкоземельных рудах втрое превышают все мировые запасы урана. Это неминуемо приведет к увеличению роли ториевого ядерного горючего в энергетике будущего.

Поскольку ранее речь шла почти исключительно о тории и продуктах его распада, здесь мы коротко расскажем о важнейших соединениях элемента № 90. Впрочем, эпитет «важнейшие», видимо, не совсем уместен: только одно соединение элемента № 90 — его двуокись ThO2 имеет самостоятельное применение, остальные же важны лишь для науки и... для производства тория.

Белый тугоплавкий порошок двуокиси тория имеет структуру флюорита. Его получают при сжигании тория. То же самое вещество ThO2 образует защитную пленку на корродирующемся, окисляющемся тории. ThO2 — соединение довольно прочное и весьма термостойкое. Достаточно сказать, что остаток сгоревшей калильной сетки газового фонаря представляет собой в основном двуокись тория. Существование двух других кислородных соединений элемента №    90 остается дискуссионным. Моноокись тория ThO, видимо, все-таки существует. В литературе описана ее кристаллическая решетка, аналогичная решетке хлористого натрия. Под действием перекиси водорода образуется перекись тория, которой раньше приписывали формулу Th2O7. Сейчас установлено, что состав этого вещества значительно сложнее, поскольку в его молекулу входят и захваченные из раствора анионы.

Нерастворимое в воде соединение состава Th(OH)4 имеет щелочной характер и потому, растворяясь в кислотах, не растворяется в щелочах. Начинает выпадать в осадок уже при pH 3,5, в том время как гидроокиси трехвалентных редких земель получают лишь при pH 7-8. Это свойство используют для грубого разделения редкоземельных элементов и тория.

Известно довольно много галогенидов тория: три хлорида, три бромида, три иодида и фторид (валентности тория в этих соединениях: 4+, 3+ и 2+). Хлориды и фторид бесцветны, бромиды и иодиды желтого цвета. Безводный тетрахлорид очень гигроскопичен. Для практики наиболее важны фторид ThF4 и иодид Th4. Первый используют для получения тория электролизом и для растворения его в азотной кислоте: чистый торий в чистой HNO3 не растворяется, необходима добавка фторида. Тетраиодид же используют для получения тория высокой чистоты, поскольку при температуре выше 90°С это соединение способно к термической диссоциации: ThI4→ Th+ +2I2.

При нагревании тория в атмосфере водорода до 400-600°С образуется его гидрид ThH2. Если, не меняя условий, начать снижать температуру, то при 250-320°С происходит дальнейшее насыщение тория водородом и образуется гидрид состава Th4H15. Иногда гидриды тория применяют для получения высокочистого тория.

А получить его в чистом виде очень важно. В зависимости от чистоты предел прочности металлического тория на растяжение варьирует от 15 до 29 кг/мм2 (150-290 МН/м2), а твердость еще больше. Чистый торий — тяжелый (плотность 11,72 г/см3), достаточно тугоплавкий металл серебристо-белого цвета. Но чтобы увидеть истинный цвет и блеск тория, нужно процарапать черную окисную пленку, которой он, подобно многим другим металлам, защищается от воздействия химически активных компонентов атмосферы. Но, в отличие, скажем, от алюминия, в руки торий не возьмешь: при работе с ним необходимо соблюдать правила радиационной безопасности...

Производство и потребление тория растут достаточно быстрыми темпами и сейчас измеряются, по-видимому, сотнями тонн. Известно, что в 1975 г. общее потребление тория в США составляло 50 тонн, а спустя три года той же стране только на неэнергетические нужды потребовалось без малого 30 тонн тория... Роль этого элемента в нашей жизни с годами становится все значимее.

Химические элементы


Поделиться с друзьями