Перейти к основному содержанию
Химия

Азот химический элемент

Всем известно: азот инертен. Часто мы сетуем за это на элемент № 7, что естественно: слишком дорогой ценой приходится расплачиваться за его относительную инертность, слишком много энергии, сил и средств приходится тратить на его превращение в жизненно необходимые соединения.

Азот химический элементНо, с другой стороны, не будь азот так инертен, в атмосфере произошли бы реакции азота с кислородом, и жизнь на нашей планете в тех формах, в которых она существует, стала бы невозможной. Растения, животные, мы с вами буквально захлебывались бы в потоках неприемлемых жизнью окислов и кислот. И «при всем при том» именно в окислы и азотную кислоту мы стремимся превратить возможно большую часть атмосферного азота. Это один из парадоксов элемента № 7. (Здесь автор рискует быть обвиненным в тривиальности, ибо парадоксальность азота, вернее его свойств, стала притчей во языцех. И все же...)

Азот — элемент необыкновенный. Порою кажется, что чем больше мы о нем узнаем, тем не понятнее он становится. Противоречивость свойств элемента № 7 отразилась даже в его названии, ибо ввела в заблуждение даже такого блистательного химика, как Антуан Лоран Лавуазье. Это Лавуазье предложил назвать азот азотом после того, как не первым и не последним получил и исследовал не поддерживающую дыхания и горения часть воздуха. Согласно Лавуазье, «азот» означает «безжизненный», и слово это произведено от греческого «а» — отрицание и «зоэ» — жизнь

Термин «азот» бытовал еще в лексиконе алхимиков, откуда и заимствовал его французский ученый. Означал он некое «философское начало», своего рода кабалистическое заклинание. Знатоки утверждают, что ключом к расшифровке слова «азот» служит заключительная фраза из Апокалипсиса: «Я есть альфа и омега, начало и конец, первый и последний...» В средние века особо почитались три языка: латинский, греческий и древнееврейский. И слово «азот» алхимики составили из первой буквы «а» (а, альфа, алеф) и последних букв: «зет», «омега» и «тов» этих трех алфавитов. Таким образом, это таинственное синтетическое слово означало «начало и конец всех начал».

Современник и соотечественник Лавуазье Ж. Шапталь, не мудрствуя лукаво, предложил назвать элемент № 7 гибридным латино-греческим именем «нитрогеннум», что значит «селитру рождающий». Селитры — азотнокислые соли, вещества, известные с древнейших времен. (О них речь впереди.) Надо сказать, что термин «азот» укоренился только в русском и французском языках. По-английски элемент № 7 — «Nitrogen», по-немецки — «Stickstoff» (удушающее вещество). Химический же символ N — дань шапталевскому нитрогениуму.

Кем открыт азот

Открытие азота приписывают ученику замечательного шотландского ученого Джозефа Блока Даниэлю Резерфорду, который в 1772 г. опубликовал диссертацию «О так называемом фиксируемом и мефитическом воздухе». Блэк прославился своими опытами с «фиксируемым воздухом» — углекислым газом. Он обнаружил, что после фиксирования углекислоты (связывания ее щелочью) остается еще ка- конто «нефиксируемый воздух», который был назвал «мефитическим» — испорченным — за то, что не поддерживал горения и дыхания. Исследование этого «воздуха» Блэк и предложил Резерфорду в качестве диссертационной работы.

Примерно в то же время азот был получен К. Шееле, Дж. Пристли, Г. Кавендишем, причем последний, как следовало из его лабораторных записей, изучал этот газ раньше Резерфорда, но, как всегда, не спешил с публикацией результатов своих трудов. Однако все эти выдающиеся ученые имели весьма смутное представление о природе открытого ими вещества. Они были убежденными сторонниками теории флогистона и связывали свойства, «мефитического воздуха» с этой мнимой субстанцией. Только Лавуазье, ведя наступление на флогистон, убедился сам и убедил других, что газ, который он назвал «безжизненным», — простое вещество, как и кислород...

Азот вселенский катализатор?

Можно лишь догадываться, что означает «начало и конец всех начал» в алхимическом «азоте». Но об одном из «начал», связанных с элементом № 7, можно говорить всерьез. Азот и жизнь — понятия неотделимые. По крайней мере всякий раз, когда биологи, химики, астрофизики пытаются постичь «начало начал» жизни, то непременно сталкиваются с азотом.

Атомы земных химических элементов рождены в недрах звезд. Именно оттуда, от ночных светил и дневного светила, начинаются истоки нашей земной жизни. Это обстоятельство и имел в виду английский астрофизик У. Фаулер, говоря, что «все мы... являемся частичкой звездного праха»...

Звездный «прах» азота возникает в сложнейшей цепи термоядерных процессов, начальная стадия которых — превращение водорода в гелий. Это многостадийная реакция, идущая, как предполагают, двумя путями. Один из них, получивший название углеродно-азотного цикла, имеет самое непосредственное отношение к элементу № 7. Этот цикл начинается, когда в звездном веществе, помимо ядер водорода — протонов, уже есть и углерод. Ядро углерода-12, присоединив еще один протон, превращается в ядро нестабильного азота-13:

126С + 11H → 137N+γ.

Но, испустив позитрон, азот снова становится углеродом — образуется более тяжелый изотоп 13C:

137N →136C + e+ + γ.

Такое  ядро,  приняв  лишний  протон,  превращается  в  ядро  самого распространенного в земной атмосфере изотопа — 14N.

136С+11H →147N + γ.

Увы,  лишь  часть  этого  азота  отправляется  в  путешествие  по Вселенной. Под действием протонов азот-14 превращается в кислород-15, а тот,  в  свою  очередь,  испустив  позитрон  и  гамма-квант,  превращается  в другой земной изотоп азота — 15N:

147N +11H →158O + γ.

158O →157N + e+ + γ.

Земной азот-15 стабилен, но и он в недрах звезды подвержен ядерному распаду; после того, как ядро 15N примет еще один протон, произойдет не только образование кислорода 16O, но и другая ядерная реакция:

157N +11H →126C +42He.

В этой цепи превращений азот — один из промежуточных продуктов. Известный английский астрофизик Р. Дж. Тейлер пишет: «14N — изотоп, который нелегко построить. В углеродно-азотном цикле образуется азот, и, хотя впоследствии он снова превращается в углерод, все же если процесс протекает стационарно, то азота в веществе оказывается больше, чем углерода. Это, по-видимому, основной источник 14N»...

В умеренно сложном углеродно-азотном цикле прослеживаются любопытные закономерности. Углерод 12C играет в нем роль своеобразного катализатора. Судите сами, в конечном счете не происходит изменения количества ядер 12C. Азот же, появляясь в начале процесса, исчезает в конце. И если углерод в этом цикле — катализатор, то азот явно — аутокатализатор, т. е. продукт реакции, катализирующий ее дальнейшие промежуточные стадии.

Мы не случайно завели здесь речь о каталитических свойствах элемента № 7. He сохранил ли эту особенность звездный азот и в живом веществе? Катализаторы жизненных процессов — ферменты, и все они, равно как и большинство гормонов и витаминов, содержат азот.

Азот в атмосфере Земли

Жизнь многим обязана азоту, но и азот, по крайней мере атмосферный, своим происхождением обязан не столько Солнцу, сколько жизненным процессам. Поразительно несоответствие между содержанием элемента № 7 в литосфере (0,01%) и в атмосфере (75,6% по массе дли 78,09% по объему). В общем-то мы обитаем в азотной атмосфере, умеренно обогащенной кислородом.

Между тем пи на других планетах солнечной системы, ни в составе комет или каких-либо других холодных космических объектов свободный азот не обнаружен. Есть его соединения и радикалы — CN*, NH*, NH*2,

NH*3, а вот азота нет. Правда, в атмосфере Венеры зафиксировано около 2% азота, но эта цифра еще требует подтверждения. Полагают, что и в первичной атмосфере Земли элемента № 7 не было. Откуда же тогда он в воздухе?

По-видимому, атмосфера нашей планеты состояла вначале из летучих веществ, образовавшихся в земных недрах: H2, H2O, CO2, CH4, NH3.

Свободный азот если и выходил наружу как продукт вулканической деятельности, то превращался в аммиак. Условия для этого были самые подходящие: избыток водорода, повышенные температуры — поверхность Земли еще не остыла. Так что же, значит, сначала азот присутствовал в атмосфере в виде аммиака? Видимо, так. Запомним это обстоятельство.

Но вот возникла жизнь... Владимир Иванович Вернадский утверждал, что «земная газовая оболочка, наш воздух, есть создание жизни». Именно жизнь запустила удивительнейший механизм фотосинтеза. Один из конечных продуктов этого процесса — свободный кислород стал активно соединяться с аммиаком, высвобождая молекулярный азот: фотосинтез

CO2 + 2Н2O —фотосинтез→ HCOH + H2O + O2;
4NH3 + 3O2 → 2N2 + 6H2O

кислород и азот, как известно, в обычных условиях между собой не реагируют, что и позволило земному воздуху сохранить «статус кво» состава. Заметим, что значительная часть аммиака могла раствориться в воде при образовании гидросферы. В наше время основной источник поступления N2 в атмосферу — вулканические газы.

Если разорвать тройную связь...

Разрушив неисчерпаемые запасы связанного активного азота, живая природа поставила себя перед проблемой: как связать азот. В свободном, молекулярном состоянии он, как мы знаем, оказался весьма инертным. Виной тому — тройная химическая связь его молекулы: N=N.

Обычно связи такой кратности малоустойчивы. Вспомним классический пример ацетилена: HC=CH. Тройная связь его молекулы очень непрочна, чем и объясняется невероятная химическая активность этого газа. А вот у азота здесь явная аномалия: его тройная связь образует самую стабильную из всех известных двухатомных молекул. Нужно приложить колоссальные усилия, чтобы разрушить эту связь. К примеру, промышленный синтез аммиака требует давления более 200 атм и температуры свыше 500°С, да еще обязательного присутствия катализаторов... Решая проблему связывания азота, природе пришлось наладить непрерывное производство соединений азота методом гроз.

Статистика утверждает, что в атмосфере нашей планеты ежегодно вспыхивают три с лишним миллиарда молний. Мощность отдельных разрядов достигает 200 млн. киловатт, а воздух при этом разогревается (локально, разумеется) до 20 тыс. градусов. При такой чудовищной температуре молекулы кислорода и азота распадаются на атомы, которые, легко реагируя друг с другом, образуют непрочную окись азота:

N2 + O2 -+ 2NO.

Благодаря быстрому охлаждению (разряд молнии длится десятитысячную долю секунды) окись азота не распадается и беспрепятственно окисляется кислородом воздуха до более стабильной двуокиси:

2NO + O2 -+ 2NO2.

В присутствии атмосферной влаги и капель дождя двуокись азота превращается в азотную кислоту:

3NO2 + H2O -+ 2HNO3 + NO.

Так, попав под свежии грозовой дождик, мы получаем возможность искупаться в слабом растворе азотной кислоты. Проникая в почву, атмосферная азотная кислота образует с ее веществами разнообразные естественные, удобрения.

Азот фиксируется в атмосфере и фотохимическим путем: поглотив квант света, молекула N2 переходит в возбужденное, активированное состояние и становится способной соединяться с кислородом...

Из почвы соединения азота попадают в растения. Далее: «лошади кушают овес», а хищники — травоядных животных. По пищевой цепи идет круговорот вещества, в том числе и элемента № 7. При этом форма существования азота меняется, он входит в состав все более сложных и нередко весьма активных соединений. Но не только «грозорожденный» азот путешествует по пищевым цепям.

Еще в древности было замечено, что некоторые растения, в частности бобовые, способны повышать плодородие почвы.

«...Или, как сменится год, золотые засеивай злаки Там, где с поля собрал урожай, стручками шумящий, Или где вика росла мелкоплодная с горьким лупином...»

Вчитайтесь: это же травопольная система земледелия! Строки эти взяты из поэмы Вергилия, написанной около двух тысяч лет назад.

Пожалуй, первым, кто задумался над тем, почему бобовые дают прибавки урожая зерновых, был французский агрохимик Ж. Буссенго. В 1838 г. он установил, что бобовые обогащают почву азотом. Зерновые же (и еще многие другие растения) истощают землю, забирая, в частности, все тот же азот. Буссенго предположил, что листья бобовых усваивают азот из воздуха, но это было заблуждением. В то время немыслимо было предположить, что дело не в самих растениях, а в особых микроорганизмах, вызывающих образование клубеньков на их корнях. В симбиозе с бобовыми эти организмы и фиксируют азот атмосферы. Сейчас это прописная истина.

В наше время известно довольно много различных азот-фиксаторов: бактерии, актиномицеты, дрожжевые и плесневые грибки, синезеленые водоросли. И все они поставляют азот растениям. Но вот вопрос: каким образом без особых энергетических затрат расщепляют инертную молекулу N2микроорганизмы? И почему одни из них обладают этой полезнейшей для всего живого способностью, а другие нет? Долгое время это оставалось загадкой. Тихий, без громов и молний механизм биологической фиксации элемента № 7 был раскрыт лишь недавно. Доказано, что путь элементного азота в живое вещество стал возможен благодаря восстановительным процессам, в ходе которых азот превращается в аммиак. Решающую роль при этом играет фермент нитрогеназа. Его центры, содержащие соединения железа и молибдена, активируют азот для «стыковки» с водородом, который предварительно активируется другим ферментом. Так из инертного азота получается весьма активный аммиак — первый стабильный продукт биологической азотфиксации.

Вот ведь как получается! Сначала процессы жизнедеятельности перевели аммиак первичной атмосферы в азот, а затем жизнь снова превратила азот в аммиак. Стоило ли природе на этом «ломать копья»? Безусловно, потому что именно так и возник круговорот элемента № 7.

Химические элементы

Поделиться с друзьями